Reaction of 2-Bromo-3,5-dimethyl-4*H*-thiopyran-4-one with Nucleophiles. 1. Sodium Hydroxide and Sodium Methoxide

F. H. Greenberg¹ and Y. Gaoni*

Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel

Received June 15, 1978

The reaction of 2-bromo-3,5-dimethyl-4*H*-thiopyran-4-one (1) with hydroxide ion has been investigated. Conditions have been found whereby the hydroxide could either attack at C-2, with eventual replacement of the bromine and formation of a thiopyran-1,3-dione derivative (3; NaOH-MeOH-Me₂SO), or at C-6, with formation of a pyran-1,3-thiodione derivative (5; NaOH-H₂O-Me₂SO). Spectral and chemical evidence were used to assign structures to the above compounds and to the O-and S-methyl derivatives obtained by reaction with diazomethane. Pathways for these transformations are suggested.

4H-Thiopyran-4-ones and their 1,1-dioxides are products of theoretical and practical synthetic interest,^{2,3} especially when carrying extra functionality.⁴ Our finding of a way to directly produce a bromine-substituted thiopyrone, the title compound 1,⁵ provided us with a potential access to a series of other doubly functionalized thiopyran derivatives through possible substitution of the halogen. We have, therefore, initiated a study of the reactions of 1 with various nucleophiles in order to effect such substitutions. Compound 1 possesses, however, two almost equivalent sites for nucleophilic attack, namely, positions 2 and 6. While attack at C-2 may result in substitution of the bromine, probably via addition-elimination, an attack at C-6 may lead to an exchange of the 1 heteroatom through ring-opening processes.⁶ The first type of interaction has been observed with sulfide ion, which produced the thioether $2,^5$ and with several other nucleophiles, such as sodium p-toluenesulfinate or sodium N,N-diethyldithiocarbamate, which led to substitution of the bromine.7 Other nucleophiles were, however, observed to interact with 1 in both ways.

This work is concerned mainly with the reactions of 1 with hydroxide ion, where it has been possible to selectively control the direction of attack to the 2 or 6 position. The reactions of 1 with amines, where the conditions for selectivity are still under investigation, will be reported separately.

Treatment of 1 with excess sodium hydroxide in Me_2SO-

methanol yielded, after acidification, the thiopyrandione derivative 3 (Scheme I). However, a dramatic change occurred when methanol was replaced by water, the major product being the pyranthiodione derivative 5. Both 3 and 5 are isolated as the 2-one or 2-thione derivatives, respectively, although in solution a tautomeric equilibrium with the 4-one derivatives 4 and 6 is established.

The distinction between 3 and 5 is based on the NMR chemical shifts of the O- and S-methyl derivatives 7, 8, and 9 (Table II) obtained by reaction with diazomethane, which gives 7 and 8 from 3^8 but only 9 from 5. An S-methyl signal appears, in fact, at higher field than that of an O-methyl group by over 1 ppm.

The methoxy derivative 8 could also be directly obtained from 1 by reaction with sodium methoxide in methanol, accompanied by small amounts of 3. It was then found that under the reaction conditions of the formation of 3 from 1 that 8 is quantitatively transformed into 3, presumably through an addition-elimination sequence, as depicted in Scheme II.

This latter reaction suggested that the formation of 3 from 1 and hydroxide ion in the presence of methanol can result from two successive substitution reactions at C-2; the first substitution is that of the bromine by a methoxide ion, generated through the equilibrium $CH_3OH + NaOH \rightleftharpoons CH_3ONa + H_2O$, and the second, that of the methoxide by the hy-

0022-3263/78/1943-4966\$01.00/0 © 1978 American Chemical Society

Table I. UV Spectra of 2-Substituted 3,5-Dimethyl-4*H*-thiopyran-4-ones and Derivatives ^a

compd	registry no.	solvent	λ _{max}			
1 ^b	61170-10-3	EtOH		244 (9800)	297 (14 300)	
8	67844-81-9	isooctane	208 (13 500)	232 (7090)	304 (14 200) 289 (11 200)	
9	67844-82-0	isooctane	211 (14 300)	222 sh (8210)	275 (12 400)	
12	67872-51-9	isooctane	215 (17 000)	228 sh (11 100) 223 (13 100)	257 (11 000)	
3	67844-83-1	isooctane		222 (8960)		324 (1350)
		EtOH		227 (8960) 231 (22 100) 243 sh (9700)	273 (3300) 291 (3920)	321 (4990)
5 7	67844-84-2 67844-85-3	EtOH ^c isooctane	216 (10 300)	241 (15 600) 224 (15 800)	272 sh (3220)	324 (10 800) 332 (3080)

 a λ is expressed in nm. Extinction coefficients are given in parentheses. b Reference 5. c Compound 5 was not soluble in isooctane.

Table II. Melting Points and NMR Chemical Shifts (δ) of 2-Substituted 3,5-Dimethyl-4*H*-thiopyran-4-ones and Derivatives

compd	mp, °C	vinyl H	ОН	${{\mathop{\rm OCH}} olimits_3} {\mathop{\rm or} olimits_3} {\mathop{\rm SCH} olimits_3} {\mathop{\rm or} olimits_3} {\mathop{\rm oth} olimits_3} {\mathop{\rm oth} olimits_3} {\mathop{\rm oth} olimits_3} {\mathop{\rm oth} olimits_3} {\mathop{\rm oth} olimits_3} {\mathop{\rm oth} olimits_3} {\mathop{\rm oth} o$	3,5-di- methyl					
1	91-92	7.27			2.27, 2.11					
3	129-130	7.03	6.00 (brd, variable)		2.17, 2.07					
5	123-126	7.55	6.16 (brd, variable)		2.18, 2.00					
7	64 - 65	7.00		3.75	2.20, 2.10					
8	80-81	7.23		3.97	2.16, 2.10					
9	59-60	7.56		2.50	2.00, 1.97					
12	173 - 174	7.57			2.13, 1.95					

droxide, is as shown already in Scheme II. The hydroxide ion is thus predominantly converted first to a more nucleophilic methoxide ion which may react reversibly at C-6, but only irreversibly at C-2, to yield 8 (Scheme III).

In the absence of methanol and for reasons that we cannot point out at the moment, the hydroxide ion adds preferentially at C-6, and the events leading to 5 may follow the course

shown in Scheme IV. Here again two addition-elimination processes occur, the second being intramolecular. Alternatively, an elimination-addition with formation of a thicketene (11) may be involved at a second stage.

The two groups of compounds encountered here, namely, the 4-one and the 2-one or 2-thione derivatives, differ in their UV spectral properties. The difference is most easily seen (Table I) by comparing the longest wavelength absorption maxima, which for the **3**, **5**, **7**, and **1**, **8**, **9** series are above 320 nm and below 305 nm, respectively. This allowed us an assignment of structure, especially to compounds **3** and **5**, an approach that has been described and used before in related systems.^{4a,8-10}

The appearance of an intermediate absorption maximum in ethanolic solutions of 3 and 5 appears to indicate the establishment of the tautomeric equilibria $3 \Rightarrow 4$ and $5 \Rightarrow 6$. The latter equilibrium is also evidenced by the slow formation of disulfide 12 from solutions of 5. The reaction presumably involves tautomerization to 6, followed by air oxidation.

Compounds 3 and 5 differ greatly in the results of their methylation with diazomethane; 3 yields, as mentioned above, both O-methyl derivatives 7 and 8 while 5 yields only the S-methyl derivative 9. The reaction is assumed to proceed in both cases by abstraction of a proton by the diazomethane,¹¹ producing 10 from 3 (or the analogous anion from 5) and a

Scheme V

$$^{-}CH_{2}$$
— ^{+}N = $N + 3 \rightarrow CH_{3}$ — $^{+}N_{2} + 10 \rightarrow 7 + 8$

methyldiazonium cation (Scheme V). An S_N2 reaction of the latter with 10 at either oxygen affords the observed products. However, of the nucleophilic centers in the anion derived from 5, the most effective is sulfur;¹² hence, attack of the methyldiazonium cation occurs at this site. Also, 9 can be inferred to be more stable than the corresponding O-methyl derivative, based on comparison with analogous structures.¹³

Like compound 1, the sulfide 2 can be viewed as carrying a good leaving group in the form of a thiolate anion carried by one of the rings. Indeed, we have observed compound 2 to cleave readily with nucleophiles. These reactions, as well as other reactions of 1, are being studied further.

Experimental Section

Melting points were taken on a Fisher-Johns apparatus and are uncorrected. NMR spectra (Table II) were recorded in CDCl3 on a Varian T-60 spectrometer with Me₄Si as an internal standard. All signals appeared as singlets or broadened singlets. Mass spectra were obtained on a MAT 731 spectrometer. Ultraviolet spectra (Table I) were recorded on a Cary 118 spectrophotometer. Infrared spectra were determined in 5-10% chloroform solutions on a Perkin-Elmer 457A grating spectrometer. Elemental analyses were performed by Mr. Raoul Heller of The Weizmann Institute of Science, Microanalytical Laboratory. TLC was done on Merck Kieselgel 60-F254 precoated aluminum plates. The adsorbent for column chromatography was Merck Kieselgel 60, 70-230 mesh.

4-Hydroxy-3,5-dimethyl-2H-thiopyran-2-one (3). The bromide 1 (499 mg, 2.28 mmol) was added to a mixture of sodium hydroxide (325 mg, 8.12 mmol) in 9 mL of dry Me₂SO and 5 mL of methanol. No effort was made to dry the methanol. After heating with stirring at 100 °C for 19 h, the brown mixture was cooled, diluted with water to 100 mL, and extracted with ethyl ether $(3 \times 15 \text{ mL})$. Evaporation of the water-washed and dried (Na₂SO₄) extract yielded only a trace of 1. The basic, aqueous phase was acidified with 1 mL of 12 M hydrochloric acid and extracted with ethyl ether $(4 \times 20 \text{ mL})$. The combined extracts were washed with water $(1 \times 10 \text{ mL})$ and dried (Na_2SO_4) . Removal of the solvent at reduced pressure yielded 307 mg of a brown solid which on TLC displayed only one spot beyond the origin. Chromatography on 15 g of silica gel with ethyl ether as the eluant afforded 268 mg (75%) of an off-white solid, mp 128–130 °C. An analytical sample was obtained by sublimation at 1 torr at a bath temperature of 120 °C: mass spectrum, m/e 156 (M⁺); IR 3580 (OH), 3330 (OH), 1611 (C=O), 1580 (C=C), 1532, 1200, 1032 cm⁻¹. Anal. Calcd for C7H8O2S: C, 53.83; H, 5.16. Found: C, 54.14; H, 5.28

4-Hydroxy-3,5-dimethyl-2H-pyran-2-thione (5) and Bis[3,5dimethyl-4H-pyran-4-one] 2-Disulfide (12). A solution of 1 (549 mg, 2.52 mmol) in 10 mL of Me₂SO was aded to 15.5 mL of water containing NaOH14 (218 mg, 5.45 mmol), and the resulting mixture was heated with stirring at 102 °C for 18 h. The yellow solution was then worked up as in the preparation of **3**. No more than a trace of unreacted 1 was recovered. Acidification of the basic aqueous fraction produced an intense yellow color. Evaporation of the ether extracts in vacuo afforded 277 mg of a deep yellow oil that solidified on standing. TLC showed the presence of one major component. Several recrystallizations from an ethyl acetate-hexane mixture gave a few milligrams of a yellow solid, mp 123-126 °C, shown by TLC to be slightly contaminated by 12: mass spectrum, m/e 156 (M⁺); IR 3350 (OH), 2580 (SH, weak), 1642 (C=O), 1605, 1080 (COC) cm⁻¹. Anal. Calcd for $C_7H_8O_2S$: C, 53.83; H, 5.16. Found: C, 53.31; H, 5.52.

On standing, the filtrates from recrystallization of 5 deposited a white solid (12) that was recrystallized from the same solvent mixture: mp 173–174 °C; mass spectrum, m/e 310 (M⁺); IR 1640 (C=O), 1611 (C=C) cm⁻¹. Anal. Calcd for C₁₄H₁₄O₄S₂: C, 54.18; H, 4.55. Found: C, 53.66; H, 4.53.

4-Methoxy-3,5-dimethyl-2H-thiopyran-2-one (7) and 2-Methoxy-3,5-dimethyl-4H-thiopyran-4-one (8). To a stirred solution of 3 (238 mg, 1.53 mmol) in 15 mL of ether was added in small portions a large excess of ethereal diazomethane. After 2 h the solvent was evaporated, giving an oil that solidified on standing. The NMR spectrum of this mixture showed two methoxyl peaks at δ 3.72 and

3.93 in a 1:2 ratio. Chromatography of the mixture on 20 g of adsorbent with the eluant 4:1 ether-hexane yielded in fractions 7-975 mg of the white solid 7, mp 63-64 °C. Sublimation at reduced pressure gave an analytical sample: mass spectrum, m/e 170 (M⁺); IR 1614 (C=O), 1585 (C=C), 1155 cm⁻¹. Anal. Calcd for $C_8H_{10}O_2S$: C, 56.45; H, 5.92. Found: C, 56.80; H, 6.10.

Fractions 17-23 furnished 151 mg of the white solid 8, mp 79-80 °C, purified in part by sublimation at reduced pressure: mass spectrum, m/e 170 (M⁺); IR 1593 (C=O), 1548 (C=C), 1230 (C-O), 1160 cm⁻¹. Anal. Calcd for C₈H₁₀O₂S: C, 56.45; H, 5.92. Found: C, 56.26; H. 5.91.

2-Methylthio-3,5-dimethyl-4H-pyran-4-one (9). To a stirred ether solution of 300 mg of the product mixture from the reaction of 1 with hydroxide ion in aqueous Me₂SO, containing mainly 5, was added in small portions an excess of ethereal diazomethane. TLC showed that all of 5 had reacted. Chromatography of 281 mg on 30 g $\,$ of silica gel, on elution with 2:1 ether-hexane, gave 186 mg of white solid 9 that was recrystallized from hexane: mass spectrum, m/e 170 (M⁺); IR 1648 (C=O), 1605 (C=C), 1260 (C-S), 1178 cm⁻¹. Anal. Calcd for $C_8H_{10}O_2S$: C, 56.45; H, 5.92. Found: C, 56.45; H, 6.14. Another 75 mg was distributed in five other small fractions, of which only 12 was identified

Reaction of 1 with Sodium Methoxide in Methanol. Formation of 8 and 3. To a solution of sodium methoxide in 10 mL of methanol (prepared by dissolving 143 mg (6.22 mmol) of sodium in methanol) was added 1 (340 mg, 1.55 mmol). After heating at reflux for 18 h, the mixture was cooled, concentrated at reduced pressure, diluted with water, and extracted with methylene chloride (4 \times 10 mL). The combined extracts were washed with water and dried (Na₂SO₄). Evaporation of the solvent in vacuo gave 132 mg (52%) of 8, identified by its NMR spectrum. The basic, aqueous phase was acidified with 1 mL of 12 M hydrochloric acid and extracted with methylene chloride $(4 \times 10 \text{ mL})$. Workup of the extracts as above gave 85 mg of a yellow oil that became solid. Recrystallization from benzene yielded a white solid, mp 126-129 °C, whose NMR spectrum was that of 3. When the methanol was dried over and distilled from magnesium methoxide, 8 was obtained in 57% yield and the formation of 3 was suppressed. However, acidification of the basic solution yielded lesser amounts of a yellow oil that gave several spots on TLC and whose NMR spectrum may indicate addition products to 1. These materials were not examined further.

Reaction of 8 with Potassium Hydroxide in Methanol-Me₂SO. A solution of 8 (98 mg, 0.58 mmol) and potassium hydroxide (106 mg, 1.89 mmol) in 5 mL of dried Me₂SO and 5 mL of untreated methanol was heated at 110 °C for 19 h. After cooling, the yellow solution was poured into 100 mL of water and worked up as described for the conversion of 1 to 3. Evaporation of the extracting solvent gave 81 mg (90%) of a yellow-white solid, mp 127-129 °C, whose IR spectrum was identical with that of 3.

Registry No .- Diazomethane, 334-88-3; sodium methoxide, 124-41-4; sodium hydroxide, 1310-73-2.

References and Notes

- Department of Chemistry, State University College, Buffalo, N.Y.
 R. Mayer, W. Broy, and R. Zahradnik, Adv. Heterocycl. Chem., 8, 219–276 (1967
- (1977).
 (a) C. H. Chen, *Heterocycles*, **7**, 231 (1977); (b) C. H. Chen, G. A. Reynolds, and J. A. Van Allan, *J. Org. Chem.*, **42**, 2777 (1977); (c) W. Ried and H. Bopp, *Synthesis*, 211 (1978).
 (a) H. J. Teague and W. P. Tucker, *J. Org. Chem.*, **35**, 1968 (1970); (b) J. A. Van Allan, G. A. Reynolds, and C. H. Chen, *J. Heterocycl. Chem.*, **14**, 1000 (1978). (3)
- (4)1399 (1977)
- Y. Gaoni, Tetrahedron Lett., 2167 (1976).
- See, for example, the reaction of 4/H-pyran-4-ones with methylamine to give *N*-methylpyridones: M. A. Elkaschef and M. H. Nosseir, *J. Am. Chem.* (6)Soc., 82, 4344 (1960). Other examples are given in ref 2, p 270.
- Unpublished observations in this laboratory. For a reaction of diazomethane with the structurally related 3,5-dimethyl-4-hydroxy-2H-pyran-2-one, yielding a mixture of 3,5-dimethyl-2-me-thoxy-4H-pyran-4-one and 3,5-dimethyl-4-methoxy-2H-pyran-2-one, see E. Niccoli, U. Vaglini, and G. Ceccarelli, Ann. Chim., **58**, 664 (1968). D. Herbst, W. B. Mars, O. R. Gottlieb, and C. Djerassi, J. Am. Chem. Soc., **64**, 2402 (1956).
- (9) 81, 2427 (1959)
- (10) E. Suzuki, B. Katsuragawa, and S. Inone, *Synthesis*, 144 (1978).
 (11) The mechanism is essentially that proposed by R. Gompper, *Chem. Ber.*,
- (11) The mechanism is essentially that proposed by R. Gompper, *Chem. Ber.*, 93, 187 (1960).
 (12) J. O. Edwards and R. G. Pearson, *J. Am. Chem. Soc.*, 84, 16 (1962).
 (13) P. Beak, D. S. Mueller, and J. Lee, *J. Am. Chem. Soc.*, 96, 3867 (1974).
 (14) Potassium hydroxide was also effective in this and other reactions here deviated. described.